


# ДАТЧИК ВИБРАЦИИ И ТЕМПЕРАТУРЫ VTS-3D

by PassatInnovations LLC

Датчик вибрации и температуры с цифровой обработкой сигналов предназначен для мониторинга вибрационных и температурных характеристик промышленного оборудования. Датчик может использоваться как в составе распределенных систем мониторинга состояния машин и механизмов, так и в качестве автономного средства противоаварийной защиты.



### Датчик вибрации и температуры VTS-3D обеспечивает:

- измерение и обработку вибрационных характеристик по трем осям;
- измерение температуры поверхности, на которую установлен, и температуры окружающей среды (воздуха).

# Цифровой интерфейс передачи данных:

- промышленный интерфейс RS485 обеспечивает подключение датчика на удалении до 1 км, даже в условиях промышленных электромагнитных помех;
- при использовании типовых преобразователей интерфейсов, локальных сетей, беспроводных сетей и сети Интернет удаление датчика может быть не ограниченным.

#### ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

| № п/п | Параметры и характеристики                                                        | Значение               |  |  |
|-------|-----------------------------------------------------------------------------------|------------------------|--|--|
| 1     | Род питающего напряжения                                                          | постоянный ток         |  |  |
| 2     | Напряжение питания, В                                                             | 18 - 36 B              |  |  |
| 3     | Источник питания:                                                                 |                        |  |  |
|       | – тип источника питания                                                           | DC/DC                  |  |  |
|       | <ul><li>изоляция питания</li></ul>                                                | неизолирована          |  |  |
|       | - защита от импульсных помех                                                      | есть                   |  |  |
| 4     | Потребляемая мощность, не более, Вт                                               | 1.2                    |  |  |
| 5     | Тип чувствительного элемента (ЧЭ)                                                 | МЭМС                   |  |  |
| 6     | Количество осей ЧЭ                                                                | 3                      |  |  |
| 7     | Диапазон измерения линейных ускорений ЧЭ, g <sup>1</sup>                          | ±16                    |  |  |
| 8     | Полоса частот <sup>2</sup> ЧЭ измерения виброускорений, не хуже, Гц               | 5000                   |  |  |
| 9     | Измерение интегральных характеристик вибрации в полосах частот <sup>2</sup> , Гц: |                        |  |  |
|       | с.к.з виброускорения                                                              | 10 - 3000              |  |  |
|       | с.к.з виброскорости                                                               | 10 - 1000              |  |  |
|       | с.к.з виброперемещения                                                            | 10 - 200               |  |  |
| 10    | Относительные погрешности измерения интегральных характеристик вибрации           |                        |  |  |
|       | (нормированные к действительному значению), не хуже, %                            |                        |  |  |
|       | с.к.з виброускорения                                                              | $\pm 6.0$              |  |  |
|       | с.к.з виброскорости                                                               | $\pm 10.0$             |  |  |
|       | с.к.з виброперемещения                                                            | ±15.0                  |  |  |
| 11    | Время цикла обработки данных, не более, с                                         | 1.5                    |  |  |
| 12    | Количество датчиков температуры                                                   | 2 (верх, низ)          |  |  |
| 13    | Диапазон измерения температуры, °С                                                | от минус 40 до плюс 85 |  |  |



ГК «Радиант» - официальный дилер ООО «ПассатИнновации»

117246, г. Москва, ул. Профсоюзная, 65, корп. 1 Тел.: +7 495 725-04-04, Факс: +7 499 450-99-52

E-mail: sensor@ranet.ru



| № п/п | Параметры и характеристики                                | Значение                     |
|-------|-----------------------------------------------------------|------------------------------|
| 14    | Интерфейсы связи:                                         |                              |
|       | — ТИП                                                     | RS485                        |
|       | <ul> <li>максимальная скорость передачи, бит/с</li> </ul> | 115200                       |
|       | <ul><li>– гальваническая развязка</li></ul>               | нет                          |
|       | <ul> <li>встроенный терминальный резистор</li> </ul>      | нет                          |
|       | - защита от импульсных помех                              | есть                         |
| 15    | Протокол передачи данных                                  | Modbus RTU                   |
| 16    | Габаритные размеры, ШхВхГ, мм                             | 30x30x22                     |
| 17    | Крепление                                                 | шпилька, магнит              |
| 18    | Подключение:                                              |                              |
|       | - ТИП                                                     | гибкий экранированный кабель |
|       | - количество жил                                          | 8                            |
|       | - длина <sup>3</sup> , м                                  | 2                            |
|       | - оконцовка <sup>4</sup>                                  | нет                          |
| 19    | Степень защиты от пыли и влаги, не хуже                   | IP67                         |
| 20    | Температура окружающей среды, оС                          | от минус 40 до плюс 85       |
| 21    | Исполнение <sup>5</sup>                                   | общепромышленное             |
| 22    | Материал корпуса <sup>6</sup>                             | нержавеющая сталь            |
| 23    | Масса <sup>7</sup> , не более, кг                         | 0.15                         |

#### Примечания:

- <sup>1</sup> Ускорение свободного падения принимается равным  $g = 9.81 \text{ m/c}^2$ .
- $^2$  Полосы частот приведены по уровню -3dB, что соответствует коэффициенту преобразования 0.707 от номинального значения на калибровочной частоте 80  $\Gamma$ ц.
- $^{3}$  Данный параметр приведен для базовой комплектации по умолчанию если иное не оговорено Заказчиком и может уточняться при заказе.
- <sup>4</sup> Могут быть предусмотрены другие варианты оконцовки по согласованию с Заказчиком.
- 5 Возможны другие варианты исполнения по согласованию с Заказчиком.
- <sup>6</sup> Возможно изготовление корпуса из другого материала по согласованию с заказчиком (пластик, алюминий, др.)
- <sup>7</sup> Приведено без учета кабеля и зависит от материала корпуса.

### Цифровая обработка сигнала:

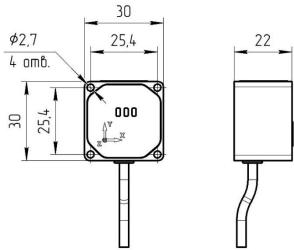
- измерение, фильтрация и преобразование интегральных величин вибрации (СКЗ ускорения, скорости и перемещения) по трем осям на основе быстрого преобразования Фурье;
- формирование аварийного состояния по превышению предупредительных и аварийных уставок порогов СКЗ, температуры поверхности и воздуха и передача его по цифровому интерфейсу;

### Масштабируемость применения датчика вибрации и температуры:

- автономное («противоаварийное реле») может применяться для защиты оборудования без использования какой либо системы с помощью выходов управления для сигнализации, либо автоматического отключения;
- использование датчика в системе минимальной конфигурации с использованием локального подключения к компьютеру через преобразователь интерфейсов RS485/USB и программного обеспечения комплекта поставки;
- подключение к существующим системам управления технологическим процессом (SCADA);
- создание распределенной, в том числе территориальной, (включающей удаленные производственные объекты) системы централизованного мониторинга состояния машин и механизмов.






## ПОДКЛЮЧЕНИЕ ДАТЧИКА



| № п/п | Цепь    | Цвет провода | Описание                                          |
|-------|---------|--------------|---------------------------------------------------|
| 1     | +V      | красный      | «+» источника питания 18-36В                      |
| 2     | GND     | синий        | общий                                             |
| 3     | RS485-A | зеленый      | линия А интерфейса RS485                          |
| 4     | RS485-B | желтый       | линия В интерфейса RS485                          |
| 5     | boot    | коричневый   | активация режима загрузчика firmware <sup>1</sup> |
| 6     | -       | белый        | не исп., оставить не подключенным                 |
| 7     | -       | розовый      | не исп., оставить не подключенным                 |
| 8     | -       | серый        | не исп., оставить не подключенным                 |
| 8     | shield  | -            | экран                                             |

Примечания:

# РАЗМЕРЫ ДАТЧИКА



Размеры указаны в миллиметрах.



ГК «Радиант» - официальный дилер ООО «ПассатИнновации»

117246, г. Москва, ул. Профсоюзная, 65, корп. 1 Тел.: +7 495 725-04-04, Факс: +7 499 450-99-52

E-mail: sensor@ranet.ru

<sup>&</sup>lt;sup>1</sup> Оставить не подключенным, для активации режима загрузчика замкнуть на GND и осуществить холодный или горячий рестарт.



## КАРТА РЕГИСТРОВ

| Адрес | Мнемоническое обозначение          | Формат  | Значение                                           | Доступ 3 |
|-------|------------------------------------|---------|----------------------------------------------------|----------|
|       | Time month recited to obtain terme | числа   |                                                    |          |
| 40006 | MB_REG_DEVICE_RANGE                | UINT16  | Текущий диапазон измерений $(2g, 4g, 8g)$ 1        | RO       |
| 40007 | MB_REG_ACC_TEMPERATURE             | INT16   | Температура с датчика IIS3DWB                      | RO       |
| 40008 | MB_REG_TEMPERATURE_BOTTOM          | INT16   | Температура с датчика 1 (нижний)                   | RO       |
| 40009 | MB_REG_TEMPERATURE_TOP             | INT16   | Температура с датчика 2 (верхний)                  | RO       |
| 40010 | MB_REG_SAMPLE_FREQ                 | UINT16  | Текущая измеренная частота дискретизации           | RO       |
| 40011 | MB_REG_DATA_UPDATE_COUNTER         | UINT16  | Счетчик обновления данных в регистрах <sup>2</sup> | RO       |
| 40012 | MB_REG_ACCELERATION_RMS_X_LO       | FLOAT   | СКЗ виброускорения оси Х                           | RO       |
| 40013 | MB_REG_ACCELERATION_RMS_X_HI       | TLOAT   |                                                    |          |
| 40014 | MB_REG_ACCELERATION_RMS_Y_LO       | FLOAT   | СКЗ виброускорения оси Ү                           | RO       |
| 40015 | MB_REG_ACCELERATION_RMS_Y_HI       | FLOAT   | СКЗ виороускорения оси 1                           |          |
| 40016 | MB_REG_ACCELERATION_RMS_Z_LO       | FLOAT   | СКЗ виброускорения оси Z                           | RO       |
| 40017 | MB_REG_ACCELERATION_RMS_Z_HI       | ILOAI   | СКЭ внороускорсния оси 2                           |          |
| 40018 | MB_REG_VELOCITY_RMS_X_LO           | FLOAT   | СКЗ виброскорости оси Х                            | RO       |
| 40019 | MB_REG_VELOCITY_RMS_X_HI           | 1 20/11 |                                                    |          |
| 40020 | MB_REG_VELOCITY_RMS_Y_LO           | FLOAT   | СКЗ виброскорости оси Ү                            | RO       |
| 40021 | MB_REG_VELOCITY_RMS_Y_HI           | LEGITI  | - CRO Bhopockopoeth den 1                          | Ro       |
| 40022 | MB_REG_VELOCITY_RMS_Z_LO           | FLOAT   | СКЗ виброскорости оси Z                            | RO       |
| 40023 | MB_REG_VELOCITY_RMS_Z_HI           | 120111  |                                                    | 110      |
| 40024 | MB_REG_DISPLACEMENT_RMS_X_LO       | FLOAT   | СКЗ виброперемещения оси Х                         | RO       |
| 40025 | MB_REG_DISPLACEMENT_RMS_X_HI       | 120111  |                                                    | 110      |
| 40026 | MB_REG_DISPLACEMENT_RMS_Y_LO       | FLOAT   | СКЗ виброперемещения оси Ү                         | RO       |
| 40027 | MB_REG_DISPLACEMENT_RMS_Y_HI       | 120/11  | сто впороперемещения оси т                         | Ro       |
| 40028 | MB_REG_DISPLACEMENT_RMS_Z_LO       | FLOAT   | СКЗ виброперемещения оси Z                         | RO       |
| 40029 | MB_REG_DISPLACEMENT_RMS_Z_HI       | 120.11  |                                                    |          |
| 40030 | MB_REG_PEAK_TO_PEAK_X_LO           | FLOAT   | Размах сигнала оси X                               | RO       |
| 40031 | MB_REG_PEAK_TO_PEAK_X_HI           |         | T using the final to the first                     | RO       |
| 40032 | MB_REG_PEAK_TO_PEAK_Y_LO           | FLOAT   | Размах сигнала оси Ү                               | RO       |
| 40033 | MB_REG_PEAK_TO_PEAK_Y_HI           | TLUAT   | т азмах сигнала оси т                              | KO       |
| 40034 | MB_REG_PEAK_TO_PEAK_Z_LO           | FLOAT   | Размах сигнала оси Z                               | RO       |
| 40035 | MB_REG_PEAK_TO_PEAK_Z_HI           | TLUAT   | т азмах сигнала оси Z                              | KO       |
| 40036 | MB_REG_PEAK_FACTOR_X_LO            | FLOAT   | Пик-фактор оси X                                   | RO       |
| 40037 | MB_REG_PEAK_FACTOR_X_HI            | LOM     | ΤΙΝΚ-ΨαΚΙΟΡ ΟΟΝ Λ                                  | KO       |
| 40038 | MB_REG_PEAK_FACTOR_Y_LO            | FLOAT   | Пик-фактор оси Ү                                   | RO       |
| 40039 | MB_REG_PEAK_FACTOR_Y_HI            | LOM     | Τιηκ-φακτορ σου 1                                  | KO       |
| 40040 | MB_REG_PEAK_FACTOR_Z_LO            | FLOAT   | Пик-фактор оси Z                                   | RO       |
| 40041 | MB_REG_PEAK_FACTOR_Z_HI            | 110/11  | τικε-φακτορ σου Δ                                  | I KO     |

Примечания:

 $^3$  RO – только чтение.



 $<sup>^{1}</sup>$  По умолчанию - 8g, 0 - соответствует 2g, 1- соответствует 16g, 2 - соответствует 4g, 3 - соответствует 8g  $^{2}$  Счетчик обновления данных используется в качестве альтернативы временной метки для отображения корректной работы устройства, инкрементируется при каждом успешном захвате данных.